Collaborative writing, reviewing and publishing tools

Dr John Hammersley, Co-founder and CEO
4,000,000 documents
350,000 authors
10,000 institutions
in 3 years
The internet is transforming research and collaboration
Proportion of the world’s papers produced with more than one international author

Citations per article versus number of collaborating countries

But, collaboration is...

...frustrating!
Endless problems

- Multiple versions of the same document
- Long email chains
- Formatting & typesetting
- Maintaining references
- Long revision cycles
Collaborative Writing and Publishing

The easiest way to create, edit and publish your research.

Start writing now! CREATE A NEW PAPER
Modeling of Trap Induced Dispersion of Large Signal Dynamic Characteristics of GaN HEMTs

O. Jardel1, S. Laurent2, T. Reveyrand2, R. Quezi2, P. Nakkala2, A. Martin2, S. Piotrowicz1, M. Campovecchio2, S.L. Delage1

1 III-V Lab, route de Nozay, 91461 Marcoussis Cedex, France
2 XLIM, 7 rue Jules Valles, 19100 Brive-la-gaillarde, France

olivier.jardel@3-5lab.fr

Abstract

We propose here a non-linear GaN HEMT model for CAD including a trapping effects description consistent with both small-signal and large-signal operating modes. It takes into account the dynamics of the traps and then allows to accurately model the modulated large signal characteristics that are encountered in telecommunication and radar signals. This model is elaborated through low-frequency S-parameter measurements complementary to more classical pulsed-IV characterizations. A 8x75µm AlInN/GaN HEMT model was designed and particularly validated in large-signal pulsed RF operation. It is also shown that thermal and trapping effects have opposite effects on the output conductance, thus opening the way for separate characterizations of the two effects.

II. IMPACT OF TRAPS ON LARGE SIGNAL CHARACTERISTICS

One convenient way to identify the impact of trapping effects is to monitor the average drain current of the transistor versus an increasing RF input power. It has already been reported in [1] and [3] that this drain current under class-AB conditions decreases as the input power increases, contradiecting the expected characteristics. Clearly, this behavior cannot be explained by thermal behavior as far as the channel temperature stays at a constant temperature. This leads, at least for moderate power, to an average drain current enhancement.

Fig. 1. Representation of the mechanism induced by traps on the average drain current.
Modeling of Trap Induced Dispersion of Large Signal Dynamic Characteristics of GaN HEMTs

O. Jarde \[authorblock\]
S. Laurens \[authorblock\]
T. Revyra \[authorblock\]
R. Qu \[authorblock\]
P. Nakada \[authorblock\]
A. Martyn \[authorblock\]
S. Pietrocolla \[authorblock\]
S. Campovacchio \[authorblock\]
S. Delage \[authorblock\]

III-V Lab, route de Noisy, 91461 Marcoussis Cedex, France
XLIM, 7 rue Jules Valois, 19100 Brive-la-gaillarde, France

Abstract—We propose here a non-linear GaN HEMT model for CAD enabling a trapping effects description consistent with both small- and large-signal operating modes. It takes into account the dynamics of the traps and then allows to accurately model the modulated large signal characteristics. This model is elaborated through mathematical expressions based on numerical and experimental investigations of GaN HEMT devices. It is shown that thermal and trapping effects have non-generally symmetric effects on the output characteristics, thus opening the way for separate characterization of these two effects.

1. Introduction

Gallium nitride (GaN) high electron mobility transistor (HEMT) is now recognized as a good candidate for a number of RF applications and mobility amplifiers. In millimeter-wave circuits, however, its high breakdown voltage, its high thermal efficiency as well as its high temperature capability is important. Furthermore, GaN devices can be used in harsh environments, such as high frequency and especially trapping effects. These trapping effects have been extensively studied using a number of techniques such as optical measurements, pull measurements, and pull displacement measurements. At the same time, models have been developed to take these effects into account [1],[2],[3], and with the effect of the traps, a full model, including an extended circuit, is needed to study the impact of large signal performance and dependence on the presence of trapped charges. These effects are the main source of the discrepancies between the trap effects. In this paper, we propose a semi-empirical model for the dynamics of the trap effects using large-signal simulations to pull measurements. The model is then validated by comparison with experimental data. The model is further improved by taking into account the influence of the traps on the output characteristics, thus opening the way for separate characterization of these two effects.

2. Current Density

3. Voltage Dependence

Figure 1: Representation of the behavior induced by traps over the gate voltage

Passive RF measurements were performed on a DC bias, on GaN HEMTs with different amount of gate length L. The gate length was varied from 5 to 10 mm, and the drain voltage was varied from 0 to 10 V. The model is then compared with experimental data in order to validate its accuracy. The model is further improved by taking into account the influence of the traps on the output characteristics, thus opening the way for separate characterization of these two effects.
{Introduction}

Your introduction goes here! Some examples of commonly used commands and features are listed below, to help you get started. If you have a question, please use the help menu (``?``) on the top bar to search for help or ask us a question.

John Lees-Miller about 2 hours ago:

Seems punchier. OK?

John Hammersley replied about an hour ago:

Yep.

John Lees-Miller closed this about an hour ago.

{Some LaTeX Examples}

{How to Include Figures}

First you have to upload the image file (JPEG, PNG or PDF) from your computer to write LaTeX using the upload link the project menu. Then use the includegraphics command to include it in your document. Use the figure environment and the caption command to add a number and a caption to your figure. See the code for Figure \ref{fig:frog} in this section for an example.

\begin{figure}
\centering
\includegraphics[width=0.3\textwidth]{frog.jpg}
\caption{A frog}
\end{figure}
“It really streamlined the process of writing the paper… I was happy to find a 21st century solution.”

Artem Kaznatcheev
Researcher at McGill University

Edge effects in game theoretic dynamics of spatially structured tumours

Artem Kaznatcheev, Jacob G. Scott, David Basanta
The khmer software package: enabling efficient nucleotide sequence analysis

¹mcrusoe@msu.edu, Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
Overleaf at Stanford University

Overleaf/WriteLaTeX: trial access for one year (Jan-Dec 2015)

Overleaf is a new collaborative writing and publishing system developed by the team behind the popular WriteLaTeX editor. Overleaf is designed to make the process of writing, editing and producing scientific papers much quicker for both authors and publishers. Overleaf/WriteLaTeX can also be linked to your Mendeley account for quick import of your Mendeley reference library.

The Stanford University Libraries are sponsoring a one year free trial of Overleaf/WriteLaTeX for all students, faculty and staff who would like to use a collaborative, online LaTeX editor for their projects.

Some of the features of Overleaf/WriteLaTeX include:

- Online collaboration, rich text editing or full online LaTeX editing. If you prefer to edit directly in LaTeX, Overleaf provides a full collaborative online LaTeX editor you can switch to at any time.
- Real-time collaboration in your browser for sharing and editing.
Overleaf at Stanford University

Did you know that the Stanford University Libraries are sponsoring a one year free trial of Overleaf Pro for all students, faculty and staff? Claim your free 10GB Overleaf Pro account.

<table>
<thead>
<tr>
<th>Use at Stanford</th>
<th>Before Trial (Dec 2014)</th>
<th>Today (Jan 2016)</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmed users</td>
<td>375</td>
<td>2065</td>
<td>450%</td>
</tr>
<tr>
<td>Projects by users</td>
<td>1,896</td>
<td>13,655</td>
<td>620%</td>
</tr>
</tbody>
</table>
Metrics: providing data on usage, collaborations & outputs
CiteULike is a free service for managing and discovering scholarly references.

Zotero is a free, easy-to-use tool to help you collect, organize, cite, and share your research sources.

Mendeley is a free reference manager and academic social network. Make your own searchable library in seconds.

You can upload a BibTeX (.bib) file that you maintain yourself or with another reference manager.

Want to see more services here? Let us know which ones, and please do let them know, too!
Minimizing Average Passenger Waiting Time

Abstract

Personal Rapid Transit (PRT) is an alternative to a conventional hackney taxi system, in which vehicles travel between stations in a dedicated network, operating in 2010 and 2011. In both cases, passengers do not book ahead. Perfect information about future requests, including statistical information on waiting times, enables passenger wait times to be reduced significantly. The passenger waiting time, one baseline study showed, was reduced by 70%, and average waiting time was reduced from 40 min to 5 min. This study shows that these lower bounds can be reached by using a conventional traffic light system, which allows the speed at which the vehicles travel to be controlled. A system that allows the vehicles to travel at different speeds, such as in a conventional network of roads, can be used to reduce waiting times. The results also show that low waiting times are achieved using a conventional traffic light system, which allows the speed at which the vehicles travel to be controlled. A system that allows the vehicles to travel at different speeds, such as in a conventional network of roads, can be used to reduce waiting times.

Introduction

Personal Rapid Transit (PRT) is an alternative to a conventional hackney taxi system, in which vehicles travel between stations on a dedicated network.
F1000Research Article Template

Please list all authors that played a significant role in the research involved in the article. Please provide full affiliation information (including full institutional address, ZIP code and e-mail address) for all authors, and identify who is/are the corresponding author(s).

Abstract

Abstracts should be up to 300 words and provide a succinct summary of the article. Although the abstract should explain why the article might be interesting, care should be taken not to inappropriately over-emphasise the importance of the work described in the article. Citations should not be used in the abstract, and the use of abbreviations should be minimized.

{Introduction}

The format of the main body of the article is flexible: it should be concise and in the format most appropriate to displaying the content of the article.
Submit to PeerJ

PeerJ is an Open Access publisher of scholarly articles. We aim to drive the costs of publishing down, while improving the overall publishing experience, and providing authors with a publication venue suitable for the 21st Century. Our tag line is: “Your Peers, Your Science. Academic Publishing Is Evolving” and we are committed to improving the process of scholarly publishing.

We have three publications:

- PeerJ, a peer-reviewed academic journal serving the Biological and Medical sciences;
- PeerJ Computer Science, a peer-reviewed academic journal serving the Computational sciences;
- PeerJ PrePrints, an innovative 'preprint server'.

Authors pay for a lifetime publishing plan, which gives them the ability to publish their articles with us for free.

Please select your target publication:

Custom submission links with:

- Automated transfer of files and metadata
- Automated pre-submission checks
- Direct submission into systems such as Editorial Manager, Scholar One and eJournalPress
“The integration of Overleaf into our editorial workflow enabled the **swift processing** of the authors' manuscripts and **simplified the procedure** for our pre-publication checks.”
Summary

- Fast uptake: 350,000 users worldwide, free to authors.
- Direct partnerships with academic publishers, institutions & other tools in the research workflow to streamline writing, collaboration, submission and review.
- Provides added value to authors, editors, reviewers and publishers.
Thanks for listening!

www.overleaf.com